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Abstract— The overall localization error performance in the received signal strength indicator (RSSI) localization 
depends on several factors that include the number of deployed sensors as well as their deployment positions 
within the deployment region. In this paper, we study the problem of selecting deployment positions from a set of 
candidate positions such that localization errors at some specific points of interest are satisfied in a least square 
error sense under the constraint of a specific number of sensors. To solve this problem, we propose a simple 
convex formulation of the sensor placement problem as a least squares problem. Instead of expressing error 
requirements, which can be difficult to evaluate in practice, we use the local sensor deployment density around a 
point of interest as a cost function to provide the simplified formulation. A numerical evaluation of the proposed 
approach shows its validity and usefulness. 
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I. INTRODUCTION 

Localization, whether of a sensor node or a phenomenon of interest (e.g., target), is one of the 
fundamental underlying processes of a sensor network [1], [2]. The importance of localization 
stems from the fact that it enables mapping between geographical information and temporal 
data. This enables the end user to take a targeted proper action (e.g., response to a gas leak) or 
for sensors to operate correctly (e.g., geographical-based routing). 
The focus of this paper is the 'target' localization problem where the goal is to estimate the 
location of a non-cooperative target of interest based on the measurements of a number of 
deployed sensors.  The estimation error performance depends on several factors (e.g., target 
energy signature, type and quality of measurements). One of the difficulties associated with 
the localization problem is the non-linear relationship between measurements (e.g., received 
signal strength (RSSI), time difference of arrival (TDOA)) and target's true location which 
makes localization a challenging non-linear estimation problem [3], [4]. This in turn implies 
the importance of the spatial distribution of sensors with respect to the target's location. In this 
paper, we focus on sensor positions as an important factor in determining the overall 
estimation error performance of the sensor network. Thus, it is important to design a suitable 
strategy for sensor deployment in localization networks. 
The sensor placement problem for target localization has received considerable attention over 
the years [5]-[12]. In the majority of these works, a cost function that is based on some variant 
of the Fisher information matrix (FIM) or equivalently the Cramer-Rao-Bound (CRB) was 
used. 
The authors in [5] derive optimal positions to minimize estimation error at a single point of 
interest using only 4 sensors in a 3-D setting. Localization in networks employing time-
difference-of-arrival (TDOA) was studied in [6], [7]; and deployment schemes using regular 
uniform Platonic solids were proposed. The authors in [8]-[10] show that non-uniform 
deployment schemes can be used to minimize localization errors. One drawback of the above 
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mentioned works is the focus on the minimization of error at only a single point which is not 
very practical in reality, where sensors monitor a region instead of a point. One work that 
attempts to address this issue is that of [11], in which sensors are deployed in order to 
minimize errors at either a single point or multiple points within the region. The authors 
propose an iterative sensor redeployment algorithm dubbed the RELOCATE algorithm. One 
shortcoming of RELOCATE is that it restricts sensor movement (i.e., deployment) to the 
perimeter of the region instead of its interior. Another work that deals with sensor relocation 
is the one in [12], where an algorithm was proposed to relocate sensors in the ROI to satisfy 
error requirements. One difference of [12] with our current work is the sequential nature of 
[20] and the freedom to place sensor. The proposed approach herein is a batch-like approach 
where sensor placement is restricted to specific locations. 
The sensor deployment/placement problem has been also viewed as a sensor selection 
problem. The sensor selection problem is an NP-hard problem even for modest dimensions. 
Therefore, several efforts aimed at producing algorithms for effective deployment. For 
example, in [13] the authors propose an optimal control formulation of sensor placement in 
detection networks. In [14], the authors propose relaxed convex formulation for sensor 
placement to be used in linear estimation problems which is not suitable for the localization 
problem. The work in [15], deals with sensor placement for non-linear measurement models; 
and several optimization solvers were proposed. The authors use the localization problem as a 
case study for their approach. However, the localization problem studied does not take the 
sensing range of sensors into consideration; and it assumes sensors are to be deployed on the 
perimeter of the ROI but not within the ROI. 
In this work, we propose a novel sensor selection approach for localization with emphasis on 
RSSI localization. In essence, estimation error performance at a point is to be expressed as a 
function of the number of sensors within a radius around the point (i.e., sensor density). Thus, 
we can express estimation requirements simply as density requirements. Using density 
information, we propose to formulate the sensor selection problem for target localization as a 
least squares problem, which can be readily solved. Given the number and distribution of 
candidate position points and points of interest, we can assign different levels of importance 
to different points to adhere with the end user requirements. 

II. PROBLEM FORMULATION 

Without loss of generality, we consider a 2-D region of interest (ROI) of dimensions 𝑏 × 𝑏. It 
is assumed that number 𝑁 points of interest are specified within the ROI that need not be 
uniformly spaced. Estimation error requirements are assigned to each point, where the 
requirement of the 𝑛th point is denoted as 𝐸𝑟𝑒𝑞(𝑛) and requirements are grouped in vector 
𝑬𝑟𝑒𝑞. We assume that 𝑀 homogeneous sensors are to be deployed with a uniform sensing 
radius 𝑅𝑠. Furthermore, there is a number of 𝐾 candidate positions where sensors can be 
placed. We find that 𝑀 < 𝐾 in order for the problem to become non-trivial. 
There are several types of sensor measurements that can be used for localization. In this 
paper, and without loss of generality, we focus on the received signal strength indicator 
(RSSI) measurements. We assume that sensors provide (RSSI) measurements which are 
easier to attain than other types of measurements (e.g., TDOA) [2]. Let 𝑑(𝑚, 𝑡) denote the 
distance between the location of the 𝑚th sensors and the target of interest located at the 
point (𝑝𝑡). If the target has a uniform energy signature, then the RSSI measurement is given 
as [16], [17]: 
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𝑧(𝑚, 𝑡) = 𝑃0
𝑑(𝑡,𝑚)𝛼

+ 𝑤𝑚                                                                                                      (1) 

 
where 𝑃0 denotes the target's initial energy and; 𝛼 is the decay factor (1< 𝛼 < 2). The noise 
{𝑤𝑚,𝑚 = 1, … ,𝑀} is i.i.d with a Gaussian distribution with zero mean and variance 𝜎2. 
We assume that sensors send their raw analog measurements to a central processor (CP) 
which performs a location estimation algorithm. We note that error performance depends on 
the estimation algorithm. However, in order to focus on the problem at hand, we assume that 
the CP employs the clairvoyant estimator (i.e., maximum likelihood (ML)) to produce the 
estimate �̂�𝑡. 
The error performance of the best estimator can be quantified using the Cramer-Rao Bound 
(CRB) given as (assuming that the target is located at the 𝑛th point of interest) [18], [19]: 

𝐸[ (𝑝𝑡 − �̂�𝑡)( 𝑝𝑡 − �̂�𝑡)𝑇] ≥ 𝐽𝑛−1                                                                                          (2) 
 
The matrix 𝐽𝑛, associated with 𝑛th point, is called the Fisher information matrix (FIM); and is 
given as: 

𝐽𝑛 = 1
4𝜎2

∑ 𝐽𝑛.𝑖𝑖∈𝐼𝑛                                                                                                                 (3) 
 
where 𝐼𝑛 denotes the set of sensor indexes that are within the sensing radius 𝑅𝑠 of the target's 
location. 
The submatrix 𝐽𝑛,𝑖 quantifies the amount of information that the 𝑖th sensor can provide about 
the target at the 𝑛th point; and is given as [16]: 

𝐽𝑛,𝑖 = 𝑃0𝛼2

𝑑𝑛,𝑖
4  (𝑝𝑛 − 𝑝𝑖)( 𝑝𝑛 − 𝑝𝑖)𝑇                                                                                        (4) 

 
We note that error performance depends on several factors (e.g., decay factor, noise statistics). 
Additionally, we note that a very important factor is the position of sensors with respect to the 
points of interest. Thus, in order to achieve a certain error performance it is important to place 
sensors at specific locations with respect to the points of interest, especially under sensor 
budget constraints. 
We now state the problem that we will study in this paper. Given 𝐾 candidate sensor positions 
and 𝑀 sensors to be deployed (𝑀 < 𝐾), how should we select the deployment positions such 
that the estimation errors are satisfied in a least square sense, that is: 

�
𝑎𝑟𝑔 𝑚𝑖𝑛𝑆  ∑(𝐸𝑟𝑒𝑞 (𝑖) − 𝐸𝑠(𝑖))2

𝑠. 𝑡. |𝑠| = 𝑀
𝑠(𝑘) = {0,1},   1 ≤ 𝑘 ≤ 𝐾 

                                                                                             (5) 

 
where the 𝐾 × 1 vector 𝐬 is a selection vector the entries of which are either 0 or 1. If a sensor 
is present at the 𝑘th point then the 𝑘th entry 𝐬(𝑘) = 1; otherwise, it is set to 0. The cardinality 
of the vector 𝐬 is denoted as |𝐬|; and 𝐸𝐬(𝑖) denotes the achieved estimation error at the 𝑖th 
point corresponding to the selection vector 𝐬. 
The above problem formulation is known as the sensor selection problem which is an NP-
hard problem. Note that when 𝑀 < 𝐾, the number of possible combinations is on the order of 

(𝐾𝑀) which, even for small values of 𝑀 and 𝐾, makes the problem computationally 
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intractable. For example, if 𝐾 = 15 and 𝑀 = 6, then there are 5005 possible sensor 
configurations to choose from; this is computationally intensive to perform. Moreover, the 
sensor selection problem is non-convex. This results from the non-convex binary nature of the 
selection vector 𝐬. Thus, suitable methods need to be designed to solve such a problem. 
In the next section, we present our proposed approach for solving this problem. 

III. PROPOSED SOLUTION 

One widely used method to solve the sensor selection problem is that of constraint relaxation 
in which the entries 𝐬(𝑘) of the vector 𝐬 are allowed to have values that fall in the interval 
[0,1]; rounding entries after solution is obtained to either 0 or 1. 
In this paper, we propose a formulation of the sensor selection problem in which the cost 
function is not the exact error as calculated using the CRB bound, but rather a surrogate 
function which is the sensor density. We note that using sensor density provides a sub-optimal 
solution to the above problem; however, it is obvious that it helps reduce the complexity of 
evaluating exact errors and performing matrix inversion at each iteration. Using this new 
function, the cost function of the sensor selection problem becomes easier to evaluate; and it 
results in a least square optimization problem which can be easily solved. 
We first derive the relationship between localization error and sensor density. We then 
propose our formulation of the modified sensor selection problem. 
 

A. Localization Error in Terms of Sensor Density 

We will first describe localization error in terms of the 'average' of the FIM described earlier. 
We note that 

𝐸[( 𝑝𝑡 − �̂�𝑡)𝑇( 𝑝𝑡 − �̂�𝑡)] ≥ 𝑇𝑟(𝐸(𝐽𝑛−1))                                                                            (6) 
 
where, Tr() denotes the trace operator. We first calculate the average of entries of the 𝑱𝑛 
matrix and start with the first entry 𝑱𝑛(1,1)  whose average can be written as: 

𝐸[𝐽𝑛(1,1)] = 𝑃0𝛼2𝑁
4𝜎2

 1
𝑁
∑ 𝐽𝑖(1,1)𝑖∈𝐼𝑛                                                                                                 (7) 

 
We note that  

𝐸[𝐽𝑖(1,1)] = 1
𝑁
∑ 𝐽𝑖(1,1)𝑖∈𝐼𝑛                                                                                                              (8) 

 
Assuming that sensors are uniformly distributed within the sensing zone around a point, the 
density function of sensors is given as: 

𝑓𝑥𝑚,𝑦𝑚(𝑥𝑚,𝑦𝑚) =
1
𝜋𝑅𝑠2

,   𝑖𝑓�𝑥𝑚2 + 𝑦𝑚2   ≤ 𝑅𝑠 

 
Then after some operations (see [20] for more details), the estimation error 𝐸𝑟𝑒𝑠(𝑛) can be 
written as: 

𝐸𝑟𝑒𝑠(𝑛) = 8𝜎2

𝑃0𝛼2𝜋(𝑅𝑠−1)
  1
𝜆
                                                                                                                  (9) 
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where 𝜆 denotes sensor density which is given as 

𝜆 =
𝑁
𝜋𝑅𝑠2

 

 
We note in (9) that the larger the sensor density (i.e., more sensors are available), the lower is 
the estimation error as expected. Fig. 1 shows a plot of the relation between 𝐸𝑟𝑒𝑠(𝑛) and 𝜆. 
Equation (9) shows that estimation error is a function of 𝜆. We will use this fact to 
reformulate the sensor selection problem as in the next section. 

 

 
Fig. 1. Localization error vs. sensor density (𝑅𝑠 = 5,𝜎2 = 1,𝛼 = 1.5) 

 
 

B. Least Square Density (LS-Density) Formulation 

Based on the discussion above, error requirement can be expressed in terms of the sensor 
density that can satisfy it. Let the 𝐾 × 1 vector 𝝀𝑟𝑒𝑞 be the corresponding vector of 𝐄𝑟𝑒𝑞, then 
we propose to formulate the sensor placement/selection problem as follows: 

�
𝑚𝑖𝑛𝑠  ∥ 𝛾𝐴𝑠 − 𝜆𝑟𝑒𝑞 ∥2

𝑠. 𝑡. |𝑠| = 𝑀
𝑠(𝑘) = {0,1},   1 ≤ 𝑘 ≤ 𝐾

                                                                                                           (10) 

 
where ∥∥2 is the second norm operator; and 𝛾 is a constant that will be explained later. The 
matrix 𝑨 above serves a role similar to an adjacency matrix used in graph theory. The entry 
𝑨(𝑖, 𝑗), in the 𝑖th row and 𝑗th column, is a function of the 𝑖th point of interest and the 𝑗th 
candidate sensor position. There are different methods to assign 𝑨(𝑖, 𝑗), depending on the 
importance of a candidate sensor position. For simplicity, we assume that all candidate 
positions are equally important, thus the entry 𝑨(𝑖, 𝑗) is given as 

𝐴(𝑖, 𝑗) = �1,   𝑖𝑓 𝑑(𝑖, 𝑗) ≤ 𝑅𝑠
0,    𝑒𝑙𝑠𝑒                                                                                                                           (11) 
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In this assignment, the 𝑖th row of 𝑨𝐬 quantifies the number of sensors covering (i.e. within the 
sensing range) the 𝑖th point of interest. In order to convert this information to density, we scale 
𝑨𝐬 with the factor  𝛾 = 1 𝜋𝑅𝑠2⁄  which is the area of the sensing zone. 
We note that the problem in (5) is transformed into a linear least squares constrained 
optimization problem which can be readily solved using various programming methods (e.g., 
Matlab). After solving (10), the largest M entries of 𝐬 are selected to place the M sensors; and 
the remaining locations are left empty. 
In the next section, we examine the performance of the proposed formulation. 

IV. SIMULATION RESULTS AND DISCUSSION 

In the following experiments, we will investigate the performance of the solution to the sensor 
selection problem using three metrics. The first performance metric is the average of the 
squared estimation error difference which is defined as 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =
1
𝑁𝑐3

� (𝐸𝑟𝑒𝑞 (𝑖) − 𝐸𝑠(𝑖))2
𝑖∈𝐼𝑐3

 

 
where the error difference is taken over the points that are covered with at least 3 sensors. 
This is intuitive since localization can only be performed in 2-D setups using at least 3 
sensors. Estimation error is assumed to be undefined for points with less than 3 sensors.  
The second performance metric that we will use is the `coverage hole' ratio (i.e., the 
percentage of points of interest that are not covered with at least 3 sensors). The combination 
of both metrics is important since it is not enough to reduce error at a small fraction of points 
of interest while a larger number of points is not covered and is not incorporated in the 
average error definition above. Thus, it would be instructive to look at the product of both the 
average error and the coverage hole ratio to have a clear quantification of the performance of 
any of the sensor selection methods. 
This product term is the third metric that we will be using. The smaller is the product value, 
the better is the overall performance of the selection process. A large value indicates that 
either coverage is not adequate; or localization error is high or both. 
In addition to our proposed LS-Density solution, we use two other methods for the sake of 
comparison. The first method is an 'optimal' brute force solution that employs enumeration of 
`all' possible combinations, compares the average error for all possibilities and chooses the 
deployment positions with the minimum average error. This approach is suitable for the case 
of relatively small values of 𝑀 and 𝐾. The second method is a random selection method in 
which 𝑀 sensors are selected at random from the 𝐾 candidate positions. 
Experiment 1: Performance vs. number of sensors (𝑴): 
In the first experiment, we study the performance of different methods. The number of 
sensors 𝑀 to be selected out of 𝐾 = 12 positions varies. A uniform error requirement of 
𝐸𝑟𝑒𝑞 = 0.1 is specified at a number of 200 random points of interest within the ROI.  This 
implies that the required sensor density is of 𝜆 = 0.12. The experiment parameters are listed 
in Table 1 below; and results are depicted in Fig. 2 and Fig. 3 below. 
We note that both the error and coverage performance of the proposed LS-Density solution 
method outperforms that of the random selection approach. Moreover, as M is increased, the 
performance of the LS-Density method approaches that of the optimal enumeration method. 
This is natural as the number of possible combinations decreases.  
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TABLE 1 
EXPERIMENT PARAMETERS 

𝑏 15 
𝐾 12 
𝑃0 500 
𝑅𝑠 5 
𝜎2 1 

 

 
Fig. 2. Average error and coverage hole for different M 

 
However, to have a better quantification of performance, we examine the error-coverage 
product as shown in Fig. 3. We note that when 𝑀 = 7, the LS-Density offers an overall 
reduction of almost 50% when compared to the random deployment method. It is also 
instructive to note that the random approach provides a product almost 300% more than that 
of the optimal brute search method, whereas the proposed approach yields only 60% more 
than the optimal. As the number of sensors to be selected is increased (from 𝑀 = 7 to 
𝑀 = 10), products become closer to each other due to the reduction in the number of possible 
combinations. 

 

 
Fig. 3. Average error and coverage hole product for different 𝑀 
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Experiment 2: Performance vs. sensing radius (𝑹𝒔): 
In this experiment, we use the similar parameters to that in the previous experiment but we fix 
both the number of sensors to 𝑀 = 8 and the estimation error requirement to 𝐸𝑟𝑒𝑞 = 0.1, and 
vary the sensing radius (𝑅𝑠). Fig. 4 and Fig. 5 show the error, coverage and product 
performance of different approaches. 

 

 
Fig. 4. Average error and coverage hole for different 𝑅𝑠 

 

 
Fig. 5. Average error and coverage hole product for different 𝑅𝑠 

 
It is evident that the coverage performance of the LS-Density is very comparable to the 
optimal solution; and that it provides a lower error performance than that of the random 
selection method. In particular, the error-coverage hole product for the LS-Density is only 
around 25% higher than that of the optimal approach for 𝑅𝑠 = 4. This is in contrast to the 
random selection method which is around 85% larger than the optimal for 𝑅𝑠 = 4. We also 
note that as 𝑅𝑠 is increased, the product performance for all methods becomes closer to each 
other. This is a result of the fact that more points are covered with more and more sensors. 
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Fig. 6. ROI with different requirements 

 
Experiment 3: Performance vs. different requirements: 
In this experiment, we consider ROI with different performance requirements. As shown in 
Fig. 6 below, points of interest that fall within the central area are assigned a requirement of 
𝐸1; and those that are outside the area are assigned a value of 𝐸2 = 0.15. We use the same 
parameters as in the previous experiments with 𝑀 = 8 sensors and 𝐾 = 12 with 𝑅𝑠=5. 
Simulation results are summarized in Fig. 7 and Fig. 8. 

 

 
Fig. 7. Average error and coverage hole for different 𝐸1 

 
We note that in this case of non-uniform requirements, random deployment might fair better 
than the proposed LS-Density with respect to error performance. However, the LS-Density 
approach compensates through a small coverage hole ratio to cover more points. This is 
evident in the error-coverage hole product in Fig. 8. 
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Fig. 8. Average error and coverage hole product for different 𝐸1 

 

V. CONCLUSION 

In this paper, we studied the sensor selection problem for RSSI localization. By expressing 
estimation error requirements in terms of sensor density information, we were able to 
transform the non-convex selection problem to another simpler convex least squares 
formulation, which can be easily solved using a range of computational software. Numerical 
evaluation of the proposed least squares density based formulation shows its effectiveness in 
terms of both localization error and coverage performance. 
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